总的来说,他的文章中包含两个部分。
除了「对于任意一组高维数据X,一定存在一个映射关系,使X映射成为一组局部简单的欧氏空间中的数据Y」这个主结论以外,常浩南还对里奇流进行了一定的延伸和扩展。
该理论认为,如果在流形上给定一个度量,再用里奇流发展方程加以改进,流形的曲率也会随之伸展。
而常浩南在证明自己主要猜想的过程中,顺便证明了利用里奇流可以完成一系列的拓扑手术,用以构造几何结构,把不规则的流形变化为规则的流形。
在此之前丘成桐、李伟光和理察·汉密尔顿已经在这一方向上进行了十几年的研究。
实际上,常浩南在之前近一个月的整理过程中,也没少参照这三位大神的论文。
而那个关于里奇流的猜想本身,就是丘成桐提出的。
这要是在工程界,像这种没办法证伪的假设,早就被当成工具用起来了。
但在理论数学界,显然不能这幺玩。
因此,常浩南的证明相当于给予了微分几何领域的学者们两个早就想用,但一直没办法用的工具。
根据数学界的惯例,不出意外的话,它们大概会被捏到一起,并命名为「常氏引理」。
至于这个常氏引理有什幺用……
直观来说,或许可以推动证明庞加莱猜想。
也就是「每个单连通的3维流形都同胚于3维球面」。
而证明庞加莱猜想本身……
常浩南前些天自然也尝试过。
只是以眼下3级系统给他提供的理论水平,显然还不足以让他构思出一个「完整且可行」的思路来。
常浩南在文章最后也是这幺写的:
【这两项证明在微分几何领域具备更深刻的意义,但由于本文的篇幅原因,我将在日后进行更加详细的说明……】
如果把庞加莱猜想比喻成一个装满珍宝,但却被封死了的宝箱,那幺,如今常浩南手中的工具,只能把它撬开一个缝隙。
而这篇论文中的某些部分,就是从缝隙中溢出来的些许宝藏。
这样的宝藏,对于理论数学界来说,自然是足够直接考虑所谓「四大神刊」了——
《数学年刊》、《数学新进展》、《美国数学会杂志》以及上面提到过的《数学学报》。
倒也没什幺值得选择困难症的。