那于情于理,最后一个也该轮到其他人了吧?
菲奖的竞争范围本来就非常狭窄,每一届有可能的获奖者最多也不超过两手之数。
分母一次少了俩,对于其他人来说自然是天大的好消息。
毕竟大家都是竞争对手,不相互拉踩捅刀就已经非常体面了。
面对两个大概率出局的人幸灾乐祸,这只能称作人之常情,没什幺好指摘的。
总之,在如雷鸣般热烈的掌声,以及全场目光的簇拥中,还有些发懵的常浩南和佩雷尔曼二人只好离开座位,各自向周围致意一番之后,走到台上。
高斯奖,也是一枚圆形的金色奖章,不过形制要朴素很多,只是在上面印有高斯的头像、全名、颁奖机构,以及「为了应用数学」三行字母而已。
别说佩雷尔曼这种在另一条时间线上拒领菲奖的奇人,哪怕是常浩南,对此也并没有什幺心理波动。
实际上,就连他都开始觉得,自己可能会无缘这一届菲尔兹奖。
【写到这里我希望读者记一下我们域名101??????.?????】
因此,在获奖感言的时候,他直接就把自己给菲奖准备的内容稍微改了改,给说出来了:
「非常感谢国际数学联盟,以及德国数学家联合会对于我研究成果的肯定,庞加莱猜想,也就是「单连通的闭三维流形是三维球面」,这一概念本身纯粹而抽象,似乎并没有任何实用价值,甚至,由于其描述过于简单直观,往往给非数学专业的人一种无病呻吟的错觉。」
当他说到这里的时候,台下众人,包括帕里斯和旁边已经发言过的佩雷尔曼,都露出了会心的笑容——
庞加莱猜想的本质之抽象和描述之简单,形成了一种极端的反差。
以至于在缺少足够专业训练的前提下,单凭猜想的文本含义根本无法理解猜想本身。
也使得民科很少能够触及这一研究方向。
与每天恨不得收到一万封垃圾投稿的数论领域形成了鲜明对比。
稍微停顿一瞬间后,常浩南继续道:
「但是,瑟斯顿的几何化纲领将三维流形的风景展现在世人面前,汉密尔顿的里奇流为曲率构造黎曼度量提供了有力工具,在证明庞加莱猜想的过程当中,依随计算机技术的发展,纯粹理论到应用算法的开发周期越来越短,同样得益于计算机技术的发展,纯数学与应用数学之间的界限也逐渐开始被打破……」
「……」
「在实践当中,里奇流在二维曲面上的应用已经逐步展开,而我们的研究已经证明,里奇流在三维流形上的应用更为深邃奥妙,强悍有力,尽管三维流形的拓扑和几何知识远还未普及,但作为自然真理的忠实刻画,我们相信,这一数学工具在未来必将成为改写历史进程的有力武器……」