“他们扩展了非对易几何的传统框架,以处理几何空间的谱截断和在有限分辨率下提供几何空间的粗粒度近似的公差关系.,并且利用了圆的谱截断为算子系统定义了一个传播数,且证明了它在稳定等价下是一个不变量,并且可以用于比较同一空间的近似。”
“而在这种框架下,通过波动方程我们能描述‘鼓’在被敲响时的振动,同时因为‘鼓面’的边缘牢牢地贴在刚性的架子上,我们可以认为波动方程的边界条件是狄利克雷边界条件。”
“有了这两块的数据,再通过扩散方程等方法,我们就能通过鼓发出的声音来计算出它的形状,哪怕你没有见过它。”
周海笑着解释了一下,却直接说懵了凑过来听热闹的学生。
几何空间的谱截断是什么东东?圆的谱截断又是啥米?
听声辨位他们都知道是什么意思,但是听声辨形状,这听都没听说过。
数学真的能做到的这种地步吗?它不是玄学啊!
掐指一算就能知道发生了什么,这也太离谱了亿点点吧?
倒是徐川,大抵明白了周海的意思。
所谓的“听鼓辨形”,其实就是拉普拉斯算子在一个区域内的本征值问题。
要通过数学进行‘听鼓辨形’,关系到另外一个概念。
那就是‘扩散想象’。
我们都知道,如果将一滴墨水滴入清水中,墨水会随着时间扩散。
这就是扩散现象。