田言真看着乔喻写下的这一串公式,面色不变的说道:“证明过程呢?”
“首先q已经确定是作用在曲线同调群的量子算符了嘛,然后第一步就是构建一个量子同调范畴,首先对h进行分解,构建新的量子态,然后用量子态维数描述曲线同调性。
第二步就是找到量子化同调群与有理点的关系,这里就很明显了,同调群的维数直接与曲线的亏格g相关。亏格越大,意味着曲线的几何复杂性越高,有理点的个数相对较少。
这个时候把q加进去,就能到dimqh1(cp)=f(g,q),这是为了让局部几何结构的变化更加敏感,进一步限制了有理点的个数。
然后通过jacobian对有理点进行限制,这是今天讲座上那位罗伯特教授用到的方法,我们可以改一下,放进完备空间里。按照之前的研究jacobian的阶次越高,意味着曲线上可分配的有理点数量可能更少。
最后再把这个函数构建出来就行了。函数右边前半部分是量子化后的同调群维数,它取决于曲线的亏格g和量子算符q,后半部分反映了曲线的几何结构和有理点的限制。
您真是太厉害了田导,随便指点我几句,就让我迈出了证明有这个常数c的一大步!”
乔喻由衷的感谢了句。
田言真则看着乔喻在稿纸上飞快写下的证明过程沉默不语。
他能感觉到心跳正在加速。
“砰砰砰……”像正在被敲打的战鼓一般。
这是什么领悟速度?他本以为光给乔喻简单讲解量子化起码需要半个小时,因为这其中牵扯到很多复杂的数学概念,很多概念他都不确定乔喻是否接触过。
毕竟乔喻并没有接受过系统化的数学教育,但他讲着,讲着,这家伙突然就把昨天一个粗浅的想法给明确到这种地步了?而且看过程,似乎没有错,还挺严谨。
不是没问题,但对于十五岁的孩子来说,他真没法要求更多了!
“你之前接触过辛几何?”压下心头激动的情绪,田言真用尽可能稳定的语气问了句。
“没有啊。”乔喻摇了摇头。
“专门学过量子物理?”田言真又追问道。
“没有啊,就是知道一点点,比如波函数什么的,以及微观世界没有确定只有概率这些。没有专门研究过,就是看过一些科普,了解波粒二象性之类的。”乔喻再次摇了摇头。
“那你懂了?”
“懂了啊,原理就是让曲线包含量子变量或者说量子结构来进行微操嘛,拓展其可操作性嘛。您都讲的那么清楚了,要是还不懂的,那不是很蠢?”
说完乔喻突然感觉有点不对,反应了过来,小心翼翼的问道:“啊……难道我推的过程不对?”
田言真深吸了口气,摇了摇头,突然觉得他原本一些之前看来挺聪明的学生,现在看来的确是有些蠢了。
然后缓缓开口答道:“数学考试分对错,但数学前沿研究其实没有什么对错。判断推导过程是否正确,只取决于你是否能在给定的理论框架下自圆其说,不被挑出任何逻辑上的漏洞。
目前我还没看出你的推导过程有什么逻辑漏洞,但我不能代表数学界。起码我对彼得·舒尔茨的研究仅限于了解,其中也包括了p进几何的同调理论,并不精通。你可以把这些全部录进下午研讨会的稿件里,跟大家一起分析。”
乔喻连忙点了点头,说道:“明白了,田导。”
两人正说着,房门突然被推开,薛教授提着两盒饭出现在了门口。
“乔……额,田先生,您也来了?”
“嗯,中午我拜托几位校领导陪罗伯特教授去吃饭了,我考虑着乔喻这孩子第一次开研讨会,给他来讲解一些东西。”
“哦,您也还没吃饭吧?要不你们先吃?”
田言真犹豫了一下,然后点了点头,说道:“好,那我就在这里吃吧。你也别来回跑了,我给小李发个消息,让他给你带一份回来。”
本来他没打算在这儿吃饭的。
但没办法,教乔喻这样的学生,真的很容易上瘾,因为特别容易收获成就感。
尤其是这孩子数学方面的基础知识简直像一副混杂的抽象画,但却能在这抽象中找到自己的脉络,这天赋大概不比彼得·舒尔茨差。
田言真相信,不管谁有这样的学生,大概都不介意多交流一会。
“不用那么麻烦了,正好我骑个车去食堂吃了再过来。”
“那也行吧,你吃完了赶紧回来,帮乔喻把他的东西整理一下,录进电脑,我正好提前给乔喻讲些东西。”田言真点了点头,说道。
薛松心情复杂的点了点头,答道:“行。我尽快。”说完立刻转身离去,田言真则打开盒饭说道:“赶紧把饭吃完,你还有几个命题,我跟你简单讲讲。”
“好的,田导。”
很多时候打心眼里喜欢一个人其实表现都是差不多的。
……
“……如果设x是亏格g的代数曲线,其模空间 mg就参数化了所有亏格为g的曲线,并进行几何约束……”
“但你想过没有,这样又会多出一个需要跟模形式同调群性质相关的指数,大大增加了结果的复杂度。”
“那田导,您觉得这块该怎么处理呢?”
“我觉得不如直接引入舒尔茨的p-进 hodge理论,通过分析曲线在p-进数域qp上的行为,得到更进一步的几何约束。”
“您的意思是把局部性质的全局化?但局部信息通常与特定的质数p相关联,而不同的质数可能导致不同的局部行为,这更困难吧?”
“但这是你提出来的,所以就需要你来思考了。不过据我所知,p-进几何中,可以用etale同调群描述代数曲线的局部性质。而且就像你刚才说的,完备性条件已经确保我们能够从局部几何结构推导出全局结果,所以这条路肯定是可行的。”
“哦,那这块我要再好好想想了……但还是要引入一个常数吧?”
“的确要好好想,想仔细。乔喻,你要记得,数学证明任何一个数学猜想,对数学家的学术水平而言最大的收获是证明方法,而不是单纯的结果……”
随便吃了顿快餐的薛松,接替了乔喻开始做录入的工作,耳边师徒俩的讨论跟指点则不停地钻入他的耳中。
心情又变得更复杂了。
羡慕乔喻能得到一位大佬级院士如此悉心的指点,这是真嫡系关门弟子的待遇啊,还是特别宠爱的那种。
别说院士导师了,就是一般的导师指点学生的时候都不太可能如此用心跟投入。
给有具体行政职务的大佬当过研究生的人都知道,大佬们基本不会pua学生,但也基本不会关心你的论文、你的学业、以及你是否能毕业,甚至毕业的时候他都不一定记得还有你这么个学生……
平时负责带人的只有一个小导,当然小导的负责程度则因人而异,于是大佬带出的硕士水平也有着极大参差。
而乔喻正享受着院士导师哪怕中午只吃顿盒饭,都要抽时间辅导的特别待遇。
当然,薛松也很明白,这得归功于乔喻能接得住这份特别待遇。
探讨,探讨,得有来有往才能讨论得起来。
院士导师指点几句,结果学生像个傻子一样,一副不明觉厉的样子,根本不知道怎么接,那必然就没下一次了。
显然,乔喻接住了这待遇,然后他真就成打杂的了。
好吧,起码我还是小导!
……
田言真是下午一点半离开的,其实他还有些基本的理论跟数学方面的原则想要一股脑告诉乔喻,但没办法,没时间多聊了,他还有事要忙。
下午是他亲学生第一次研讨会,组织工作交给别人去办,多少还是有点不放心。
田言真走后,乔喻也乖巧的接过了薛松的活,主要是刚刚讨论之后,他觉得有些地方需要修改,反正时间也还来得及。
“我觉得你这里需要一台最好是激光的打印机,回头你记得跟田先生提一下。”薛松突然说了句。
“啊?有必要吗?”乔喻一愣。
“现在看起来没必要,以后会经常需要的。”薛松很肯定的说道。
“哎,对了,我还忘了跟田导说imo第一阶段特训的事儿了。”乔喻突然懊恼道。“特训怎么了?”